
From Queries to Pints
Building a Beer Recommendation System with pgvector

Andrzej Nowicki

FOSDEM 2025

THE CONTENT OF THIS TALK IS INTENDED FOR INFORMATIONAL AND ENTERTAINMENT PURPOSES ONLY.
ENJOY ALCOHOLIC BEVERAGES RESPONSIBLY AND ALWAYS CONSUME ALCOHOL IN MODERATION.

Andrzej Nowicki

andrzejnowicki

12 years of Oracle DB exp, 8 years of PostgreSQL
Database Engineer @ CERN since 2020

andrzej.nowicki@cern.ch

2

www.andrzejnowicki.pl

http://linkedin.com/in/andrzejnowicki/
mailto:andrzej.nowicki@cern.ch
mailto:nowicki@cern.ch
http://www.andrzejnowicki.pl/

Our goal is to understand
the most fundamental
particles and laws
of the universe.

CERN is the world’s
biggest laboratory
for particle physics.

6

7

Large Hadron Collider (LHC)

8

Large Hadron
Collider (LHC)

• 27 km (17 mi) in
circumference

• About 100 m (300 ft)
underground

• Superconducting magnets
steer the particles around
the ring

• Particles are accelerated
to close to the speed
of light

9

10

IT @ CERN

Databases at CERN

11

Oracle since 1982

• 105 Oracle databases, more than 11.800 Oracle accounts
• RAC, Active Data Guard, GoldenGate, OEM, RMAN, APEX, Cloud…
• Complex environment

Database on Demand (DBoD) since 2011

• ≈600 MySQL, ≈400 PostgreSQL, ≈200 InfluxDB
• Automated backup and recovery services,

monitoring, clones, replicas
• HA MySQL clusters (Proxy + primary replica)

Size of the database environment

12

Total size

Oracle ≈5 PB

DBoD
(MySQL, PostgreSQL, InfluxDB) ≈150 TB

Backups ≈3 PB

VECTORS

16

Let’s build a simple beer recommendation system

The content of this talk is intended for informational and entertainment purposes only.
Enjoy alcoholic beverages responsibly and always consume alcohol in moderation.
Please remember that alcohol consumption is not suitable for everyone, and there are many non-alcoholic options
available for those who prefer them or are unable to consume alcohol.
I recommend exploring these alternatives as part of your beverage choices.
If you choose to consume alcohol, please ensure you are of legal drinking age in your location and never drink and
drive or engage in activities that require full focus and coordination.
This talk is not intended to promote excessive drinking or irresponsible behaviour.
Always prioritize your health, well-being, and safety.

In AI, a vector is an ordered list of numbers (scalars) that can represent a point in a
multidimensional space. Mathematically, a vector is often written as:

n is the dimensionality of the vector.

VECTORS

17

Embeddings are numerical representations of real-world objects that machine learning
(ML) and artificial intelligence (AI) systems use to understand complex knowledge
domains like humans do.

For example, a bird-nest and a lion-den are analogous pairs, while day-night are opposite
terms. Embeddings convert real-world objects into complex mathematical
representations that capture inherent properties and relationships between real-world
data.

EMBEDDINGS

18https://aws.amazon.com/what-is/embeddings-in-machine-learning/

https://aws.amazon.com/what-is/embeddings-in-machine-learning/

An embedding model is a type of machine learning model designed to map high-
dimensional or complex data (such as text, images, or categorical data) into lower-
dimensional continuous vector spaces, known as embeddings. These embeddings
capture the essential information or meaning of the data while preserving relationships
between different data points in the original space.

EMBEDDING MODEL

19

Input

(movie, picture, text, etc.)

How to put it all together?

20

Embedding model

Embedding

Vector

“Citrusy, sweet aroma” [0.329, 0.911, 0.21, 0.37, …]

!
That’s a simplification.

Normally you would cut the text in chunks and
embed each chunk separately

Vectors?

21

“Citrusy, sweet aroma”

“Grapefruity taste, sweet aroma”

“Harsh, spicy, roasted”

[0.317, 0.818, 0.11, 0.36, …]

[0.110, 0.010, 0.91, 0.87, …]

[0.329, 0.911, 0.21, 0.37, …]

Similar input should result in similar embedding (vector) values.

We can calculate distance between vectors to find similarity.

Our recommendation system will be based solely on similarity.

How to calculate similarity?

22

y

x

!

!

Cosine distance!

! > #

Same thing hapens in the
similarity search.

But we have 384 dimensions.

A dog is more similar to a cat
then it is similar to a banana.

sweetness

legs

There are other methods.
More on that later.

Queen? Prince? Poor man? !?Queen? Prince? Poor man?Queen? Prince?Queen?

There are some limitations of the similarity

23

“healthy” vs “unhealthy”

“healthy” vs “not healthy”

“dog” vs “banana”

0.8208

0.2532

Healthy vs Unhealthy are similar because both are adjectives, related to the health status

The “opposite” is not well defined. What is the opposite of ”king”?

0.6788

“I like beer” vs “Table partitioning is an amazing feature of RDBMS” 0.0311

“I like beer” vs “I like indexes in databases” 0.2238

“I like to index my data” vs “I like indexes” 0.7497

higher number = more similar

pgvector

24

How do we handle the vectors in the db?

pgvector

25https://github.com/pgvector/pgvector by Andrew Kane @ankane

https://github.com/pgvector/pgvector

1. Build the extension (or download binaries)

2. > CREATE EXTENSION vector;

3. > ALTER TABLE beers ADD COLUMN embedding vector (...);

4. Add a library to your application code
Available for any language with a PG client (e.g. pgvector-python)

pgvector

26https://github.com/pgvector/pgvector

– HOWTO

https://github.com/pgvector/pgvector

SELECT * FROM items ORDER BY embedding <=> '[3,1,2]' LIMIT 5;

But there’s more:

<-> L2 distance (Euclidean)

<#> (negative) inner product

<=> cosine distance

<+> L1 distance (added in 0.7.0, Manhattan)

<~> Hamming distance (binary vectors, added in 0.7.0)

<%> Jaccard distance (binary vectors, added in 0.7.0)

pgvector – queries

27https://github.com/pgvector/pgvector

https://github.com/pgvector/pgvector

pgvector – indexes

28

By default, the nearest neighbour search will perform an exact search

There are two index types that you can use for approximate results:

• Hierarchical Navigable Small World – HNSW
• InVerted File Flat - IVFFlat

https://skyzh.github.io/write-you-a-vector-db - amazing tutorial by @skyzh Alex Chi Z. (from neon)

https://skyzh.github.io/write-you-a-vector-db

pgvector – indexes and filtering

29

SQL> SELECT *
FROM beers
WHERE category_id = 123
ORDER BY embedding <-> '[3,1,2]’
LIMIT 5;

With approximate indexes, the filtering is applied after the index is scanned.
It’s possible that you’ll get less than expected 5 rows.

For HNSW indexes, candidate list is 40 by default.
It’s controllable, so you can adjust according to your filtering criteria.

You can also use Iterative Scan: SET [hnsw/ivfflat].iterative_scan = relaxed_order;
It will scan index more until enough results are found.

https://github.com/pgvector/pgvector?tab=readme-ov-file#filtering

https://github.com/pgvector/pgvector?tab=readme-ov-file

Enough
theory

30

31

Let’s build a simple beer recommendation system

dataset

32

vector=# select id, beer_name, info from beers where id in (2707,2746,2612) ;

id | beer_name | info
------+----------------+---
2612 | Massacre | Imperial dark lager aged in bourbon barrels.
2707 | Biere De Miele | Styled after a traditional Kolsch, this is an

| interpretation of a medieval Braggot,
| an ale fermented with honey

2746 | Sun Drift | Summon some sunshine with bright notes of citrus and
| black tea. A Brett-fermented ale with lemon zest and tea

https://www.kaggle.com/datasets/ruthgn/beer-profile-and-ratings-data-set

This amazing dataset is available on Kaggle under creative commons license CC BY 4.0:

!

https://www.kaggle.com/datasets/ruthgn/beer-profile-and-ratings-data-set

VECTOR data type

33

vector=# \d beers
Table "public.beers”

Column | Type | Nullable | Default
-----------+-------------------------+----------+---------------------
id | integer | not null | nextval('beers_id_seq'::regclass)
beer_name | character varying(200) | |
info | character varying(4000) | |
embedding | vector(384) | |

Indexes:
"beers_pkey" PRIMARY KEY, btree (id)

Text

How to put it all together?

34

Embedding model

Vector

“Citrusy, sweet aroma” [0.329, 0.911, 0.21, 0.37, …]

35

Embedding model

https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

Embedding

36

#!/bin/env python3

from sentence_transformers import SentenceTransformer

embedding_model = "sentence-transformers/all-MiniLM-L12-v2"

model = SentenceTransformer(embedding_model)

data = "rich blend of roasted barley"

embedding = list(model.encode(data))

print(embedding)

[-0.006417383, -0.022299055, -0.07196472, -0.038730085, 0.015408011,
0.011460664, 0.031957585, -0.14295837, -0.06265083, 0.047036696, 0.05393924,
-0.017266361, -0.060880985, -0.090641975, -0.018470088, 0.043274913,
0.10671821, -0.01918215, -0.017627805, 0.007417538, -0.094217524,
0.048147723, 0.007045083, -0.0059344354, 0.031551342, 0.0060908115, ...

Embedding Process

37

update beers set embedding = %s
where id = %s;

Embedding 3361 beer descriptions

Embedding locally on Macbook M3 Pro (single
threaded python)

~43s

Embedding locally on Macbook M3 Pro
(Python’s multiprocessing.Pool – 4 processes)

~20s
I used ChatGPT to
parallelize my code

38

28 with connection.cursor() as cursor:
31 # Loop over the rows and vectorize the data
32
33 binds = []
35
36 for id_val, info in cursor.execute(query_sql):
37 # Create the embedding and extract the vector
38 embedding = list(model.encode(info))
39
40 # Record the array and key
41 binds.append([embedding, id_val])
42
43 print(info)
44
46
47 # Do an update to add or replace the vector values
48 cursor.executemany(
49 update_sql,
50 binds,
51)

"""select id, info
from beers
order by 1"""

"""update beers
set embedding = %s
where id = %s"""

VECTOR SEARCH

39

select beer_name, info
from beers
order by embedding <=> %s
limit %s;

40

6 import psycopg
7
8 from pgvector.psycopg import register_vector
9
10 from sentence_transformers import SentenceTransformer

28 register_vector(connection)

43 # Create the embedding and extract the vector
44 embedding = model.encode(user_input)

54 beers = []
55 for (beer_name,info,) in cursor.execute(sql, [embedding, top]):
56 beers.append((beer_name,info))

62 for hit in beers:
63 print(hit)

"""select beer_name, info
from beers
order by embedding <=> %s
limit %s"""

41

NO INDEXES

vector=# explain analyze select beer_name, info
from beers
where id <> 2363
order by embedding <=> (select embedding from beers where id = 2363)
limit 5;

QUERY PLAN

Limit (cost=2064.52..2064.53 rows=5 width=357) (actual time=15.095..15.098 rows=5 loops=1)
InitPlan 1
-> Index Scan using beers_pkey on beers beers_1

(cost=0.28..8.30 rows=1 width=1146) (actual time=0.013..0.014 rows=1 loops=1)
Index Cond: (id = 2363)

-> Sort (cost=2056.22..2064.62 rows=3360 width=357) (actual time=15.093..15.094 rows=5 loops=1)
Sort Key: ((beers.embedding <=> (InitPlan 1).col1))
Sort Method: top-N heapsort Memory: 35kB
-> Seq Scan on beers (cost=0.00..2000.41 rows=3360 width=357) (actual time=0.101..13.523

rows=3360 loops=1)
Filter: (id <> 2363)
Rows Removed by Filter: 1

Planning Time: 0.710 ms
Execution Time: 15.143 ms

42

vector=# create index on beers using hnsw (embedding vector_cosine_ops);
CREATE INDEX
vector=# explain analyze select beer_name, info

from beers
where id <> 2363
order by embedding <=> (select embedding from beers where id = 2363)
limit 5;

QUERY PLAN

Limit (cost=482.29..497.44 rows=5 width=357) (actual time=3.172..3.261 rows=5 loops=1)
InitPlan 1
-> Index Scan using beers_pkey on beers beers_1

(cost=0.28..8.30 rows=1 width=1146) (actual time=0.018..0.019 rows=1 loops=1)
Index Cond: (id = 2363)

-> Index Scan using beers_embedding_idx on beers
(cost=473.99..10651.62 rows=3360 width=357) (actual time=3.169..3.255 rows=5 loops=1)

Order By: (embedding <=> (InitPlan 1).col1)
Filter: (id <> 2363)
Rows Removed by Filter: 1

Planning Time: 0.776 ms
Execution Time: 3.317 ms

43

vector=# create index on beers using ivfflat (embedding vector_cosine_ops);
CREATE INDEX
vector=# explain analyze select beer_name, info

from beers
where id <> 2363
order by embedding <=> (select embedding from beers where id = 2363)
limit 5;

QUERY PLAN

Limit (cost=27.00..40.58 rows=5 width=357) (actual time=0.444..0.487 rows=5 loops=1)
InitPlan 1
-> Index Scan using beers_pkey on beers beers_1

(cost=0.28..8.30 rows=1 width=1146) (actual time=0.017..0.019 rows=1 loops=1)
Index Cond: (id = 2363)

-> Index Scan using beers_embedding_idx1 on beers
(cost=18.70..9144.62 rows=3360 width=357) (actual time=0.441..0.483 rows=5 loops=1)

Order By: (embedding <=> (InitPlan 1).col1)
Filter: (id <> 2363)
Rows Removed by Filter: 1

Planning Time: 0.724 ms
Execution Time: 0.527 ms

VECTOR SEARCH

44

Prompt: 'lemon'

Sun Drift
Summon some sunshine with bright notes of citrus and black tea. A Brett-fermented ale with
lemon zest and tea

Lemon Lager
Refreshingly cool taste produced with freshly squeezed lemon juice from Japanese Hiroshima
Lemons, fermented and bottled as the perfect thirst-quencher, no matter what season.

Tocobaga Red Ale
Pours amber in color with notes of citrus and caramel. Citrus hop bitterness upfront with
notes of caramel and an Amish bread sweetness. Citrus hop bitterness returns at the end for
a long dry finish.75 IBU

Sorachi Ace
This is a saison featuring the rare Japanese-developed hop Sorachi Ace. The Sorachi Ace hop
varietal is noted for its unique lemon zest/lemongrass aroma.

Femme Fatale Sudachi
A new version of Evil Twin?s classic brett fermented I.P.A. feauring Sudachi, an Asian
citrus, for a nice citrusy note.

DEMO
45

46
https://pixabay.com/photos/beer-draft-beer-happy-hour-beverage-2218900/

DRINK
RESPONSIBLY!

https://pixabay.com/photos/beer-draft-beer-happy-hour-beverage-2218900/

What about real life usage?

47

How to put it all together?

48

Embedding
model

Two households, both alike in dignity
(In fair Verona, where we lay our scene),
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean

…

[0.329, 0.917, 0.211, 0.307, …]

Chunking

Two households, both alike in dignity

(In fair Verona, where we lay our scene),

From ancient grudge break to new mutiny,

Where civil blood makes civil hands unclean

VectorChunksInput
(e.g. text)

[0.129, 0.101, 0.561, 0.487, …]

[0.989, 0.091, 0.231, 0.962, …]

[0.439, 0.053, 0.513, 0.321, …]

How to put it all together?

49

[0.329, 0.917, 0.211, 0.307, …]Two households, both alike in dignity

(In fair Verona, where we lay our scene),

From ancient grudge break to new mutiny,

Where civil blood makes civil hands unclean

VectorChunks

[0.129, 0.101, 0.561, 0.487, …]

[0.989, 0.091, 0.231, 0.962, …]

[0.439, 0.053, 0.513, 0.321, …]

&

Text Vector
Two households… [0.329, 0.917…

(In fair Verona… [0.129, 0.101…

From ancient… [0.989, 0.091…

Where civil… [0.439, 0.053…

Database

Text Vector
Two households… [0.329, 0.917…

(In fair Verona… [0.129, 0.101…

From ancient… [0.989, 0.091…

Where civil… [0.439, 0.053…

How to put it all together?

50

Database

Looking for details
about houses

Embedding
model

[0.299, 0.880, 0.141, 0.757, …]

LLM

Similarity search

Relevant information

Result

User prompt

“Two households, both alike in dignity”

Both houses had people of equal status…

Text Vector
Two households… [0.329, 0.917…

(In fair Verona… [0.129, 0.101…

From ancient… [0.989, 0.091…

Where civil… [0.439, 0.053…

51

Database

Looking for details
about houses

Embedding
model

[0.299, 0.880, 0.141, 0.757, …]

LLM

Similarity search

Relevant information

Result

User prompt

“Two households, both alike in dignity”

Both houses had people of equal status…How to put it all together? cont.

We would add a ReRank operation here
We can query from DB more information
Rank our information on relevance
Be selective in what we feed into the LLM

Retrieval
Augmented
Generation

pgvector https://github.com/pgvector/pgvector

IVFFlat & HNSW https://skyzh.github.io/write-you-a-vector-db/

psycopg3 https://www.psycopg.org/psycopg3/

AccGPT https://indico.cern.ch/event/1395528/contributions/5865654/attachments/2833642/4952053/AccGPT-IML_v2.pdf

Beer dataset https://www.kaggle.com/datasets/ruthgn/beer-profile-and-ratings-data-set

Romeo and Juliet by W. Shakespeare

References

52

Writeup of CERN’s
Internal Knowledge Chatbot

https://github.com/pgvector/pgvector
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://www.psycopg.org/psycopg3/
https://indico.cern.ch/event/1395528/contributions/5865654/attachments/2833642/4952053/AccGPT-IML_v2.pdf
https://www.kaggle.com/datasets/ruthgn/beer-profile-and-ratings-data-set

53

We also have a booth!
Bulding F, Level 2

Visit us if you’re around Geneva!
https://visit.cern

https://visit.cern/

Thank you !

andrzejnowicki

andrzej.nowicki@cern.ch

www.andrzejnowicki.pl

http://linkedin.com/in/andrzejnowicki/
mailto:andrzej.nowicki@cern.ch
mailto:nowicki@cern.ch
http://www.andrzejnowicki.pl/

